Dihydrido-complexes of Osmium

By B. BELL, J. CHATT, and G. J. LEIGH*

(School of Molecular Sciences, The Chemical Laboratory, The University of Sussex, Brighton BN1 901)

Summary The synthesis of cis-[OsH₂L₄] and cis-[OsH₂- $(CO)L_3$ (L = tertiary phosphine or arsine) from $[OsH_4L_3]$ are described, and the conversion of [OsH₄(PEtPh₂)₃] into a new dinitrogen complex [OsH₂(N₂)(PEtPh₂)₃].

METAL polyhydrido-complexes in general show a substitution pattern in which two hydride ligands may be replaced, directly or indirectly, by a single ligand molecule such as monotertiary phosphine, dinitrogen, or carbon monoxide. Recently, a large number of osmium tetrahydrido-complexes $[OsH_4L_3]$ (L = tertiary phosphine or arsine) have been reported,^{1,2} and these can be protonated to give [OsH₅L₃]⁺. A hexahydrido-complex [OsH₆(PMe₂-Ph), has also been prepared.¹ We now report two series of dihydrido-complexes.

 $[OsH_4L_3]$ reacts with an excess of L in refluxing toluene during 24 h to give $[OsH_2L_4]$ (L = PMe_2Ph, PEt_2Ph, AsEt₂Ph, PMePh₂, PEtPh₂, or AsEtPh₂). The complexes are generally air-stable, white, and crystalline, and in toluene solution show one band in the i.r. spectra in the region 1940–2000 cm⁻¹ attributable to ν (Os-H). Similarly, under 1 atm pressure of carbon monoxide in refluxing toluene during 18 h $[OsH_4L_3]$ yields $[OsH_2(CO)L_3]$ (L = PMe₂Ph, PEt₂Ph, PMePh₂, PEtPh₂, or AsEtPh₂). The carbonyls are also air-stable, and in solution the i.r. spectra show two bands in the region 1840-1940 cm⁻¹. These are due to $v(C \equiv O)$ and v(Os-H), possibly coupled.

hydride region seem very similar to those of $[MH_2(PF_3)_4]$ $(M = Ru \text{ or } Os),^3 [RuH_2(PMe_2Ph)_4],^4 \text{ and } [RuH_2(CO)-$ (PMePh₂)₃].⁴ It is likely that all our dihydrido-complexes similarly have the hydride ligands in the cis-configuration.

Dinitrogen is capable of replacing two hydride ligands in some polyhydrido-complexes, e.g., [CoH₃(PPh₃)₃], which yields [CoH(N₂)(PPh₃)₃].⁵ The osmium tetrahydrides do not react with dinitrogen, even at a pressure of 150 atm. However, they do react with toluene-p-sulphonyl azide, a reagent which has been used in organic chemistry to replace two active hydrogen atoms from a methylene group by a diazo-group.⁶ Only in one case, [OsH₂(N₂)(PEtPh₂)₃], was it possible to isolate a crystalline product. This compound has $v(N\equiv N)$ at 2085 cm⁻¹ and v(Os-H) at 1925 cm⁻¹ (Nujol mull). It decomposes fairly rapidly at 20°, even under dinitrogen, and all the other homologues appeared to be even less stable.

 $\nu(N \equiv N)$ in $[FeH_2(N_2)(PEtPh_2)_3]^7$ is found at 2055 cm⁻¹ and in $[FeH_2(N_2)(PPh_3)_3]^8$ at 2074, 2053, and 2049 cm⁻¹ (solid-state splitting). In [RuH₂(N₃)PPh₃)₃]⁹ it is found at 2147 cm⁻¹. These values all refer to Nujol mulls. $\nu(N\!\equiv\!N)$ does not vary much with the phosphine, but because the order of stability of these dinitrogen complexes is apparently Fe>Ru>Os, then $v(N \equiv N)$ does not show any reliable correlation with thermal or oxidative stability.

We acknowledge the award of an S.R.C. Studentship (to B.B.).

(Received, March 16th, 1970; Com. 361.)

- ¹ P. G. Douglas and B. L. Shaw, Chem. Comm., 1969, 632; J. Chem. Soc. (A), 1970, 334.
- ²G. J. Leigh, J. J. Levison, and S. D. Robinson, Chem. Comm., 1969, 705.

The ¹H n.m.r. spectra of the compounds in the metal

- ³ T. Kruck and A. Frasch, Z. anorg. Chem., 1969, 371, 1. ⁴ K. C. Dewhirst, W. Keim, and C. A. Reilly, Inorg. Chem., 1968, 7, 546.
- ⁴ A. Sacco and M. Rossi, Chem. Comm., 1967, 316.

- ⁶ M. Regitz, Angew. Chem., 1967, 79, 786.
 ⁷ A. Sacco and M. Aresta, Chem. Comm., 1968, 1223.
 ⁸ Yu. G. Borodko, M. O. Broitman, L. M. Kachapina, A. K. Shilova, and A. E. Shilov, Zhur. strukt. Khim., in the press.
- ⁹ W. H. Knoth, J. Amer. Chem. Soc., 1968, 90, 7172.